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Probability distributions having power-law tails are observed in
a broad range of social, economic, and biological systems. We
describe here a potentially useful common framework. We derive
distribution functions {pk} for situations in which a “joiner particle”
k pays some form of price to enter a community of size k− 1, where
costs are subject to economies of scale. Maximizing the Boltzmann–
Gibbs–Shannon entropy subject to this energy-like constraint
predicts a distribution having a power-law tail; it reduces to the
Boltzmann distribution in the absence of economies of scale. We
show that the predicted function gives excellent fits to 13 different
distribution functions, ranging from friendship links in social net-
works, to protein–protein interactions, to the severity of terrorist
attacks. This approachmay give useful insights intowhen to expect
power-law distributions in the natural and social sciences.

heavy tail | fat tail | statistical mechanics | thermostatistics | social physics

Probability distributions are often observed to have power-law
tails, particularly in social, economic, and biological systems.

Examples include distributions of fluctuations in financial mar-
kets (1), the populations of cities (2), the distribution of Web site
links (3), and others (4, 5). Such distributions have generated much
popular interest (6, 7) because of their association with rare but
consequential events, such as stock market bubbles and crashes.
If sufficient data are available, finding themathematical shape of

a distribution function can be as simple as curve-fitting, with a fol-
low-up determination of the significance of the mathematical form
used to fit it. However, it is often interesting to know if the shape of
a given distribution function can be explained by an underlying
generative principle. Principles underlying power-law distributions
have been sought in various types of models. For example, the
power-law distributions of node connectivities in social networks
have been derived from dynamical network evolution models (8–
17). A large and popular class of such models is based on the
preferential attachment rule (18–27), wherein it is assumed that
new nodes attach preferentially to the largest of the existing nodes.
Explanations for power laws are also given by Ising models in
critical phenomena (28–34), network models with thresholded
“fitness” values (35), and random-energy models of hydrophobic
contacts in protein interaction networks (36).
However, such approaches are often based on particular

mechanisms or processes; they often predict particular power-law
exponents, for example. Our interest here is in finding a broader
vantage point, as well as a common language, for describing a
range of distributions, from power law to exponential. For de-
riving exponential distributions, a well-known general principle is
the method of maximum entropy (Max Ent) in statistical physics
(37, 38). In such problems, you want to choose the best possible
distribution from all candidate distributions that are consistent
with certain set of constrained moments, such as the average en-
ergy. For this type of problem, which is highly underdetermined,
a principle is needed for selecting a “best” mathematical function
from among alternative model distribution functions. To find the
mathematical form of the distribution function pk over states
k= 1; 2; 3; . . . , the Max Ent principle asserts that you should
maximize the Boltzmann–Gibbs–Shannon (BGS) entropy

functional S½fpkg�= −
P

kpklog pk subject to constraints, such as
the known value of the average energy hEi. This procedure gives
the exponential (Boltzmann) distribution, pk ∝ e−βEk , where β
is the Lagrange multiplier that enforces the constraint. This var-
iational principle has been the subject of various historical justifi-
cations. It is now commonly understood as the approach that
chooses the least-biased model that is consistent with the known
constraint(s) (39).
Is there an equally compelling principle that would select fat-

tailed distributions, given limited information? There is a large
literature that explores this. Inferring nonexponential distribu-
tions can be done by maximizing a different mathematical form
of entropy, rather than the BGS form. Examples of these non-
traditional entropies include those of Tsallis (40), Renyi (41),
and others (42, 43). For example, the Tsallis entropy is defined
as K

1− q ð
P

kp
q
k − 1Þ, where K is a constant and q is a parameter for

the problem at hand. Such methods otherwise follow the same
strategy as above: maximizing the chosen form of entropy subject
to an extensive energy constraint gives nonexponential distribu-
tions. The Tsallis entropy has been applied widely (44–53).
However, we adopt an alternative way to infer nonexponential

distributions. To contrast our approach, we first switch from proba-
bilities to their logarithms. Logarithms of probabilities can be
parsed into energy-like and entropy-like components, as is stan-
dard in statistical physics. Said differently, a nonexponential dis-
tribution that is derived from a Max Ent principle requires that
there be nonextensivity in either an energy-like or entropy-like
term; that is, it is nonadditive over independent subsystems, not
scaling linearly with system size. Tsallis and others have chosen to
assign the nonextensivity to an entropy term, and retain exten-
sivity in an energy term. Here, instead, we keep the canonical
BGS form of entropy, and invoke a nonextensive energy-like term.
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Many statistical distributions, particularly among social and bi-
ological systems, have “heavy tails,”which are situations where
rare events are not as improbable as would have been guessed
from more traditional statistics. Heavy-tailed distributions are
the basis for the phrase “the rich get richer.” Here, we propose
a basic principle underlying systems with heavy-tailed dis-
tributions. We show that it is the same principle (maximum
entropy) used in statistical physics and statistics to estimate
probabilistic models from relatively few constraints. The heavy-
tail principle can be expressed in terms of shared costs and
economies of scale. The probability distribution we derive is
a mathematical digamma function, and we show that it accu-
rately fits 13 real-world data sets.
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In our view, only the latter approach is consistent with the principles
elucidated by Shore and Johnson (37) (reviewed in ref. 39). Shore
and Johnson (37) showed that the BGS form of entropy is uniquely
the mathematical function that ensures satisfaction of the addition
and multiplication rules of probability. Shore and Johnson (37) as-
sert that any form of entropy other than BGS will impart a bias that
is unwarranted by the data it aims to fit. We regard the Shore and
Johnson (37) argument as a compelling first-principles basis for
defining a proper variational principle for modeling distribution
functions. Here, we describe a variational approach based on the
BGS entropy function, and we seek an explanation for power-law
distributions in the form of an energy-like function instead.

Theory
Assembly of Simple Colloidal Particles. We frame our discussion in
terms of a joiner particle that enters a cluster or community of
particles, as shown in Fig. 1. However, this is a natural way to
describe the classical problem of the colloidal clustering of
physical particles; it is readily shown (reviewed below) to give an
exponential distribution of cluster sizes. However, this general
description also pertains more broadly, such as when people
populate cities, links are added to Web sites, or when papers
accumulate citations. We want to compute the distribution, pk, of
populations of communities having size k= 1; 2; . . . ;N.
To begin, we express a cumulative cost of joining. For particles

in colloids, this cost is expressed as a chemical potential, i.e.,
a free energy per particle. If μj represents the cost of adding
particle j to a cluster of size j− 1, the cumulative cost of as-
sembling a whole cluster of k particles is the sum

wk =
Xk−1

j= 1

μj: [1]

Max Ent asserts that we should choose the probability distribu-
tion that has the maximum entropy among all candidate dis-
tributions that are consistent with the mean value hwi of the total
cost of assembly (54),

pk =
e−λwk

P
ie−λwi

; [2]

where λ is a Lagrange multiplier that enforces the constraint.
In situations where the cost of joining does not depend on the

size of the community a particle joins, then μk = μ∘, where μ∘ is
a constant. The cumulative cost of assembling the cluster is then

wk = ðk− 1Þμ∘: [3]

Substituting into Eq. 2 and absorbing the Lagrange multiplier λ
into μ∘ yields the grand canonical exponential distribution, well
known for problems such as this:

pk =
e−μ

∘k
P

ie−μ
∘ i: [4]

In short, when the joining cost of a particle entry is indepen-
dent of the size of the community it enters, the community size
distribution is exponential.

Communal Assemblies and Economies of Scale. Now, we develop a
general model of communal assembly based on economies of scale.
Consider a situation where the joining cost for a particle depends
on the size of the community it joins. In particular, consider
situations in which the costs are lower for joining a larger
community. Said differently, the cost-minus-benefit function
μk is now allowed to be subject to economies of scale, which, as
we note below, can also be interpreted instead as a form of
discount in which the community pays down some of the joining
costs for the joiner particle.
To see the idea of economy-of-scale cost function, imagine

building a network of telephones. In this case, a community of
size 1 is a single unconnected phone. A community of size 2 is
two connected phones, etc. Consider the first phone: The cost of
creating the first phone is high because it requires initial in-
vestment in the phone assembly plant. And the benefit is low,
because there is no value in having a single phone. Now, for the
second phone, the cost-minus-benefit is lower. The cost of pro-
ducing the second phone is lower than the first because the
production plant already exists, and the benefit is higher because
two connected phones are more useful than one unconnected
phone. For the third phone, the cost-minus-benefit is even lower
than for the second because the production cost is even lower
(economy of scale) and because the benefits increase with the
number of phones in the network.
To illustrate, suppose the cost-minus-benefit for the first phone

is 150, for the second phone is 80, and for the third phone is 50.
To express these cost relationships, we define an intrinsic cost for
the first phone (joiner particle), 150 in this example. We define
the difference in cost-minus-benefit between the first and second
phones as the discount provided by the first phone when the
second phone joins the community of two phones. In this ex-
ample, the first phone provides a discount of 70 when the
second phone joins. Similarly, the total discount provided by
the two-phone community is 100 when the third phone joins the
community.
In this language, the existing community is paying down some

fraction of the joining costs for the next particle. Mathematically,
this communal cost-minus-benefit function can be expressed as

μk = μ∘ −
kμk
k0

: [5]

The quantity μk on the left side of Eq. 5 is the total cost-minus-
benefit when a particle joins a k-mer community. The joining
cost has two components, expressed on the right side: each join-
ing event has an intrinsic cost μ∘ that must be paid, and each
joining event involves some discount that is provided by the
community. Because there are k members of the existing com-
munity, the quantity μk=k0 is the discount given to a joiner by
each existing community particle, where k0 is a problem-specific
parameter that characterizes how much of the joining cost bur-
den is shouldered by each member of the community. In the
phone example, we assumed k0 = 1. The value of k0 = 1 repre-
sents fully equal cost-sharing between joiner and community
member: each communal particle gives the joining particle a dis-
count equal to what the joiner itself pays. The opposite extreme

Fig. 1. The joining cost for a particle to join a size k− 1 community is μk . This diagram can describe particles forming colloidal clusters, or social processes such
as people joining cities, citations added to papers, or link creation in a social network.
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Fig. 2. Eq. 7 gives good fits (P > 0:05; see SI Text for details) to 13 empirical distributions, with the values of μ∘ and k0 given in Table 1. Points are empirical
data, and lines represent best-fit distributions. The probability pk of exactly k is shown in blue, and the probability of at least k (the complementary cu-
mulative distribution,

P∞
j=k pj) is shown in red. Descriptions and references for these datasets can be found in SI Text.

20382 | www.pnas.org/cgi/doi/10.1073/pnas.1320578110 Peterson et al.
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limit is represented by k0 →∞; in this case, the community gives
no discount at all to the joining particle.
The idea of communal sharing of cost-minus-benefit is appli-

cable to various domains; it can express that one person is more
likely to join a well-populated group on a social networking site
because the many existing links to it make it is easier to find (i.e.,
lower cost) and because its bigger hub offers the newcomer more
relationships to other people (i.e., greater benefit). Or, it can
express that people prefer larger cities to smaller ones because of
the greater benefits that accrue to the joiner in terms of jobs,
services, and entertainment. (In our terminology, a larger com-
munity pays down more of the cost-minus-benefit for the next
immigrant to join.) We use the terms “economy of scale” (EOS)
or “communal” to refer to any system that can be described by
a cost function, such as Eq. 5, in which the community can be
regarded as sharing in the joining costs, although other func-
tional forms might also be of value for expressing EOS.
Rearranging Eq. 5 gives μk = μ∘k0=ðk+ k0Þ. The total cost-

minus-benefit, wk, of assembling a community of size k is

wk = μ∘k0
Xk−1

j= 1

1
j+ k0

= μ∘k0ψðk+ k0Þ−C; [6]

where ψðkÞ= − γ +
Pk−1

j=1 j
−1 is the digamma function (γ = 0:5772:::

is Euler’s constant), and the constant term C= μ∘k0ψðk0Þ+ μ∘ will
be absorbed into the normalization.
From this cost-minus-benefit expression (Eq. 6), for a given k0,

we can now uniquely determine the probability distribution by
maximizing the entropy. Substituting Eq. 6 into Eq. 2 yields

pk =
e−μ

∘k0ψðk+k0Þ
P
i
e−μ∘k0ψði+k0Þ

: [7]

Eq. 7 describes a broad class of distributions. These distribu-
tions have a power-law tail for large k, with exponent μ∘k0, and

a cross-over at k= k0 from exponential to power law. To see this,
expand ψðk+ k0Þ asymptotically and drop terms of order 1=k2;
this yields wk ∼ μ∘k0ln

�
k+ k0 − 1

2

�
, so Eq. 7 obeys a power law

pk ∼
�
k + k0 − 1

2

�−μ∘k0 for large k, and pk becomes a simple ex-
ponential in the limit of k0 →∞ (zero cost-sharing). One quan-
titative measure of a distribution’s position along the continuum
from exponential to power law is the value of its scaling expo-
nent, μ∘k0. A small exponent indicates that the system has ex-
tensive social sharing, thus power-law behavior. As the exponent
becomes large, the distribution approaches an exponential func-
tion. Eq. 7 has a power-law scaling only when the cost of joining
a community has a linear dependence on the community size.
The linear dependence arises because the joiner particle inter-
acts identically with all other particles in the community.
What is the role of detailed balance in our modeling? Fig. 1

shows no reverse arrows from k to k− 1. The principle of Max
Ent can be regarded as a general way to infer distribution
functions from limited information, irrespective of whether there
is an underlying a kinetic model. So, it poses no problem that

Fig. 3. Eq. 7 fitted to the 13 datasets in Table 1, plotted against the total cost to assemble a size k community, μ∘wk−1. Values of μ∘ and k0 are shown in Table 1.
The y axis has been rescaled by dividing by the maximum pk , so that all curves begin at pk=maxðpkÞ= 1. All data sets are fit by the log y = − x line. See Fig. 2 for
fits to individual datasets.

Table 1. Fitting parameters and statistics

Data set μ∘ k0 hki N μ∘k0 P

GitHub 9(1) 0.21(2) 3.642 120,866 2(2) 0.78
Wikipedia 1.5(1) 1.3(1) 25.418 21,607 1.9(1) 0.79
Pretty Good Privacy 1(1) 2.6(2) 4.558 10,680 2.6(3) 0.16
Word adjacency 3.6(4) 0.6(1) 5.243 11,018 2.1(3) 0.09
Terrorist attacks 2.1(2) 1(1) 4.346 9,101 2.2(3) 0.38
Facebook wall 1.6(1) 2.3(3) 2.128 10,082 3.6(5) 0.99
Proteins (fly) 0.9(2) 5(2) 2.527 878 5(2) 0.89
Proteins (yeast) 0.9(1) 4(1) 3.404 2,170 3(1) 0.48
Proteins (human) 0.8(1) 4(1) 3.391 3,165 4(1) 0.52
Digg 0.68(3) 4.2(3) 5.202 16,844 2.8(2) 0.05
Petster 0.21(3) 15(3) 13.492 1,858 3(1) 0.08
Word use 2.3(1) 0.8(1) 11.137 18,855 1.9(2) 0.56
Software 0.8(1) 2.1(3) 62.82 2,208 1.7(3) 0.69
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some of our distributions, such as scientific citations, are not taken
from reversible processes.

Results
Eq. 7 and Fig. 2 show the central results of this paper. Consider
three types of plots. On the one hand, exponential functions can
be seen in data by plotting log pk vs. k. Or, power-law functions
are seen by plotting log pk vs. log k. Here, we find that plotting
log pk vs. a digamma function provides a universal fit to several
disparate experimental data sets over their full distributions (Fig.
3). Fig. 2 shows fits of Eqs. 7–13 datasets, using μ∘ and k0 as fitting
parameters that are determined by a maximum-likelihood pro-
cedure (see SI Text for dataset and goodness-of-fit test details).
The μ∘ and k0 characterize the intrinsic cost of joining any cluster,
and the communal contribution to sharing that cost, respectively.
Rare events are less rare under fat-tailed distributions than

under exponential distributions. For dynamical systems, the risk of
such events can be quantified by the coefficient of variation (CV),
defined as the ratio of the SD σk to the mean hki. For equilibrium/
steady-state systems, the CV quantifies the spread of a probability
distribution, and is determined by the power-law exponent, μ∘k0.
Systems with small scaling exponents (μ∘k0 ≤ 3) experience an
unbounded, power-law growth of their CV as the system size N
becomes large, σk=hki∼Nβ. This growth is particularly rapid in
systems with 1:8< μ∘k0 < 2:2, because the average community size
hki diverges at μ∘k0 = 2. For these systems, β= 1=2 is observed.
Several of our datasets fall into this high-risk category, such as the
number of deaths due to terrorist attacks (Table 1).

Discussion
We have expressed a range of probability distributions in terms
of a generalized energy-like cost function. In particular, we have
considered types of costs that can be subject to economies of
scale, which we have also called “community discounts.” We
maximize the BGS entropy, subject to such cost-minus-benefit
functions. This procedure predicts probability distributions that
are exponential functions of a digamma function. Such a distri-
bution function has a power-law tail, but reduces to a Boltzmann
distribution in the absence of EOS. This function gives good fits
to distributions ranging from scientific citations and patents, to
protein-protein interactions, to friendship networks, and toWeb
links and terrorist networks—over their full distributions, not
just in their tails.
Framed in this way, each new joiner particlemust pay an intrinsic

buy-in cost to join a community, but that cost may be reduced by
a communal discount (an economy of scale). Here, we discuss a few
points. First, both exponential and power-law distributions are
ubiquitous. How can we rationalize this? One perspective is given
by switching viewpoint from probabilities to their logarithms, which
are commonly expressed in a language of dimensionless cost
functions, such as energy=RT. There are many forms of energy
(e.g., gravitational, magnetic, electrostatic, springs, and interatomic
interactions). The ubiquity of the exponential distribution can be
seen in terms of the diversity and interchangeability of energies.
A broad swath of physics problems can be expressed in terms

of the different types of energy and their ability to combine, add,

or exchange with each other in various ways. Here, we indicate
that nonexponential distributions, too, can be expressed in a lan-
guage of costs, particularly those that are shared and are subject
to economies of scale. Second, where do we expect exponentials
vs. power laws? What sets Eq. 5 apart from typical energy func-
tions in physical systems is that EOS costs are both independent
of distance and long-ranged (the joiner particle interacts with all
particles in given community). Consequently, when the system
size becomes large, due to the absence of a correlation length-
scale, the energy of the system does not increase linearly with
system size, giving rise to a nonextensive energy function. This
view is consistent with the appearance of power laws in critical
phenomena, where interactions are effectively long-ranged.
Third, interestingly, the concept of cost-minus-benefit in Eq. 5

can be further generalized, also leading to either Gaussian or
stretched-exponential distributions. A Gaussian distribution re-
sults when the cost-minus-benefit function grows linearly with
cluster size, μk ∼ k; this would arise if the joiner particle were to
pay a tax to each member of a community, and this leads to a total
cost of wk ∼ k2 (Eq. 1). These would be “hostile” communities,
leading to mostly very small communities and few large ones,
because a Gaussian function drops off even faster with k than an
exponential does. An example would be a Coulombic particle of
charge q joining a community of k other such charged particles,
as in the Born model of ion hydration (55). A stretched-exponential
distribution can arise if the joiner particle instead pays a tax to
only a subset of the community. For example, in a charged sphere
with strong shielding, if only the particles at the sphere’s surface
interact with the joiner particle, then μk ∼ k2=3 and wk ∼ k5=3,
leading to a stretched-exponential distribution. In these situations,
EOS can affect the community-size distribution not only through
cost-sharing but also through the topology of interactions.
Finally, we reiterate a matter of principle. On the one hand,

nonexponential distributions could be derived by using a non-
extensive entropy-like quantity, such as those of Tsallis, com-
bined with an extensive energy-like quantity. Here, instead, our
derivation is based on using the BGS entropy combined with
a nonextensive energy-like quantity. We favor the latter because
it is consistent with the foundational premises of Shore and
Johnson (37). In short, in the absence of energies or costs, the
BGS entropy alone predicts a uniform distribution; any other
alternative would introduce bias and structure into pk that is
not warranted by the data. Models based on nonextensive en-
tropies intrinsically prefer larger clusters, but without any basis to
justify them. The present treatment invokes the same nature of
randomness as when physical particles populate energy levels.
The present work provides a cost-like language for expressing
various different types of probability distribution functions.
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